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Judgments of the relative gimilarity of pairs of alternatives are used to construct
s model of the decision space of & group of college admissions officers. This model is
then used to predict the preferences of the officers. The accuracy of the predictions
gupports the hypothesis that preference judgments are made on the bagis of the simil-
arity of given alternatives to on stideal” alternative. A nonmetric multidimensional
sealing procedure is used to construct the space. This procedure yields a dimensional
representation based upen very few sesumptions about the nature of the gimilarity
measures.

I. Introduction

Measurements of the degree of sameness or differentness among stimuli abound in
peyehological research.’ Such measurements yield information sbout the similarity of
pne pair of stimuli relative to another pair. Coombs (1964, p. 441) points out that
gimilarities data is important to theoretical psychology in two senses:

i As a means of studying cognitive structure. This use of similarities date is
relatively new, and has been greatly facilitated by recent advances in multi-
dimensional scaling (Shepard, 1962a, b; Kruskal, 1964a, b; Torgerson, 1065;
Lingoes, 1964).

ii. As an explanatory principle for such psychological phenomena as perceptual
organization, association, transfer and retroactive inhibition (Atteneave, 1950}.

This paper describes the use of similarities data in both of the above senses: to study
the cognitive structure of a group of college admissions officers; and to use the structure
obtained to explain the preferences of the officers for a set of hypothetical college
applicants.

The prirary resuit of this research is an empirical demonstration that supports the
fpllowing intuitively plausible but thus far untested theoretical position.

A set of alternatives can be represented as & seb of points in » multidimensional space.
In that same space there existe for ench individual sn ideal object (i.e., one that, if it
existed would slways be preferred to all other objects). The individual's preference
ordering of slternatives is gsimply the inverse of the ordering of distances in the space
from the idenl objeet to all aliernatives.

* Received September 1967 and revised January 1968.

t 'This is part of & paper presented at the Tourteenth International Meetings of the Institute for
Mansgement Science, in August, 1667, Mexico City. It is based upon my Ph.DD. dissertation
(Elahr, 1968). I rm indebted to my committee, especially Herbert A. Simon and Eenneth R.
MacCrimmon for eriticism and support; and to my Chicnpo collengues, R. Weil, 5. Becker, and
P. Goodman, for their comments on an earlier draft. The research was supported in part by 8
Tord Foundation Fellowship. The computer work wae done at the Computation Centers at both
Carnegie-Mellon University snd the University of Chicago.

¢ Although messurements of gimilarity have been commonty uged in paychologicsl research
{e g., Messick, 1956; Shepard, 1964), as Attenesve {1930} points out: “The question ‘what makes
things seem alike or different?’ is so fundamental that very few psychologists have been naive
enough to nsk it.”” In recent yenrs, the development of multidimensional gealing techniques has
facilitated the investigation of this fundamental guestion.
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This position has been developed by Coombs and his co-workers (Coombs, 1950, 1964;
Bennett and Hays, 1960) under the rubric of the “unfolding technique.” The empirical
applications of Coombs’ ideas have been rather limited, however, due to the dificuity
of implementing the procedures.’ The approach described in this paper, while based
upon the theoretieal position outlined above, follows a very different procedure.
Coombs’ technique takes as input the judges’ preference orderings for alternatives and
yields as output the spatinl representation that is consistent with those inputs. Our
approach takes as input a set of similarity judgments and an independent determina-
tion of an ideal object; it vields as output a spatial representation that is consistent
with the similarity data and a prediction of the preference ordering.! The prediction
is then tested against an independently obtained set of preference judgments. The
results indicate that a spatial configuration based upon judgments of similarity can
be used to predict preference.

A secondary result of the research is a contribution to the clinical judgment area: the
determination of the evaluation function that can be used to characterize the eollege
admissions officers. This study of a set of experienced decision malkers behaving in a
complex, realistic, and familiar environment is an example of the trend in investigations
of human judgment to move out of the artificially contrived circumstances of the
laboratory into the realistic complexity of everyday decision making.’

I1. Definitions and Theory

The psychological space, E, of the decision maker consists of a set of multidimen-
sional objects, S, and an ideal multidimensional object, 0. A decision consists of the
identification of an object in E by the decision maker as being closest to, or most
similar to, his subjectively perceived 0. The objects in S and the ideal object O are
composed of many attributes (or dimensions, factors, components, ete.).”

For most decisions no object in F exactly matches O', If there is an object that is
closest to O’ on all dimensions, then it is the most preferred or most suitable object.
However, the characteristic of most decisions that makes them nontrivial is the fact
that different objects are closest to O along different dimensions. The decision maker

¢ The multidimensional unfolding technrique has the rather restrictive requirement that there
be wide variation in the preference orderinga of the individual judges. Muliidimensional unfolding
sssumes a single spatial configuration of alternatives with idenl objects (in Coombs’ model the
judges themselves) scattered widely throughout the space (Bennett and Hays, 1860, p. 78). The
technigue used in this paper containg the possibility of a different configuration for each judge, or
a single configuration with judges widely dispersed, or a single configuration with a single ideal for
sl judges. Furthermore, the unfolding technique yields nonmetric resuits, whereas the Shepard-
Eruskal technique yields metric results: the interpoint distences in the configuration.

1 The procedure that constructs o spatial representation from the rank ordering of the similari-
ties datn is a version of nonmetric multidimensional scaling developed by Roger Shepard (19624,
b) and improved by Joseph Kruskel (1964e, b}. We are indebted to Messrs. Shepard and Kruskal
for providing listings and operating instructions for their computer programs.

5. F., the evolution of the research program in clinical judgment at the Oregon Research
Ipstitute, summarized by Hoffman (1968},

s In this paper we use both vector notation and attribute-value notation for describing the ob-
jecta, The latter is convenient when we want to explicitly name the dimensions under considera-
tion. Thus, we might describeanobjectas X = (aiitt, @2ive, ... dyivs), Where the a's are names
of nttributes and the v's are values of those attributes. Thess values can range in specificity from
ratio scales to equivalence classes. For example, a personnel selection decision might have 0’ =
(age: wid-40's, sex: mele, 1Q: 128, experience: over 20 years, . . ). For preferences for automobiles
we might have 0 = (top speed: 60, cost: 0, color: red, . . .). In most of the empirieal work on
decision making, O' has the attributes of probability, payoff, and events.



DTCISION MAKING IN A COMPLEX BNVIRONMENT 597

must assign to each of the alternatives a number or label according to its overall
distance from O'. This is funciionally equivalent to mapping some of the multidimen-
sional objects from F into either the set of reals or a set of equivalence classes. The
object that obtains the minimum value from the evaluation process is the selected
object. The equivalence classes may be as simple as an accept-reject dichotomy, in
which case the ideal object is equivalent to a set of acceptable levels along each attri-
bute.

We postulate some evaluation function F(S; - 0') that yields a measure of the
proximity of the i alternative to ', That is, in a choice between alternatives S; and
S., the decision maker chooses the Sy that minimizes F(8; - 0'), 1 = 1, 2; where 0’
is the ideal object and F is the preference evaluation function.

We further postulate a similarity evaluation funclion that is the same ag the pref-
erence evaluation function. That is, if two pairs of alternatives, (S,, Sp) and (S., 8,),
are judged as to relative similarity, the decision maker will designate pair (Ss, Ss) as
more alike than pair (Sz, 8,) if F(Se —8s) is less than (8. - 8,). We can test this
position by empirically obtaining both similarity and preference data on a set of
alternatives. The two measures should be related to the following way. From the set
of similarity measures we can construct a spatial configuration in which each point
in the space represents one of the alternatives and in which the points are arranged so
that the inverse rank order of interpoint distances in the space corregponds to the rank
order of similarities given in the input data. In this configuration the two closest points
(i.c., least interpoint distance) correspond to the two alternatives that were judged most
similar, the two points farthest apart correspond to the two alternatives that were
least similar, efc.

Assume that we have obtained such a stmilarity generated configuration; what
should we expect to find when we compare this similarity configuration to the pref-
erence data? If we locate the ideal object in this same space, then we ghould find that
the preference ordering of the alternativesis directly related to the ordering of distances
in the space from the ideal object to each alternative. For prediction of preferences we
need only a set of similarity judgments and the specification of the ideal object. In the
next sections we describe such an approach.

I11. Definition and Scaling of the Decision Environment
A. The Decision Makers

The five subjects used throughout this study were the four males and one female
comprising the admissions staff at an undergraduate college of engineering and seience,
Their experience and operating procedures teaded to foster a high degree of consensus
in their everyday decision making,”

B. Construction of Basic Environment

The admissions officers were asked to prepare a list of the most important attributes
used in making admissions decisions. For each attribute mentioned they were asked

7 They had been admissions officers at this school from one to ten years. In & typical year they
processed almost two $housand applicants. In the year preceding the testing described below, each
officer individually read and evaluated all applieations. It there was disagreement as to the
appropriate notion, the officers met and discussed the applicant. Some applications were put into
o contingeney category and were reread upon the basis of some subsequent information. These
meetings led to some tacit communication among the oficers (especially from the Director to the
other officers) as to the relative weightings that were being put on the various ntiributes of the
applicants.
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TABLE 1
Environmeni Table
~ fange of Values of Attributes —
Attributes (in alpkabetical arder}
Greatest Value Least Value

Alumni Interview highest | very high ; high above average] average
Campus Interview 9 7 5 3 1
College Boord Scores 800 700 600 500 400
Extra-curricular several/ | some/ none/ none/ none/

Leadership/Membership several| several several gome none
High School Grade Average A B+ B B— C
High School Recommendation superior |excellent |very good| pood gverage
1Q 150 140 135 120 110
Rank in Benior Class top 5% | top 10% {top 20% | top 25% top 38%

to list typical high; average and low values. From the officers’ responges we constructed
s table of eight attributes with five discrete values for each atfribute (see Table 1).
This Environment Table (B-Table) was constructed on the basis of three heuristics.
One was simply to use the most frequently mentioned attributes. The second was to
represent both values of two dichotoraous meta-attributes: quantitative-qualitative
values, and nonacademic-academic atfributes. (Of course these are not independent,
and three of the academic attributes—Boards, IQ, and Rank—have quaniitative
values.) The third was to use a set of relatively independent attributes. It is difficult
to meet this criterion with the academic attributes, but this heuristic excluded such
derived attributes as predicted grade point average. It should be noted at this thme
that the E-Table is used only as a “rough” approximation to the decision environment.
No assumptions are made as to the relative importance of attributes, their actual
interdependence or the relative value of each entry alone as an attribute. The cruecial
assumption—that there is no attribute that is very important that is nof included in
the E-Table—was supported by agreement by all the officers that the E-Table realis-
tically represents the decision environment with which they were typically faced.

C. Unidimensional Scoling of Atfributes and Values

The mensurements described below determined the relative importance of the eight
attributes in the B-Table and the relative importance of the five values of each atfri-
bute. Each judge completed rating forms that measured his assessment of the relative
importance of attributes and the relative importance of the values of each atfribute.

1. Atirdbute Scaling.—In order to obtain a ratio scale of importance along which we
can place attributes, we used a procedure proposed by Comrey (1950) and elaborated
by Torgerson (1958, pp. 104-112). The basic task for the subject in this approach is to
observe & pair of stimuli and, with respect to some attribute, “divide 100 points between
them in accordance with the absolute ratio of the greater to the lesser” {Comrey, 1950,
p. 317). In our case the attribute is actually the meta-attribute of “overall impor-
tance,” and the stimuli are the eight attributes in the E-Table.

Judges were then presented with all twenty-cight pairs of attributes (eight attributes,
two at a time). The position of each attribute in the pair was randomized. Judges were
instructed to compare the mazimum values of each pair of attributes. Thus, they
compared not simply IQ to Rank, for example, but rather they compared the relative
importance of an IQ of 150 to a Rank in Class of Top 5 per cent.
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TABLE 2
Sealed Values of Nomingl Volues Averaged over Judges
Alumni Interview | nominal value] highest | very high i high sbove aversge] average
scale value 1.0 .66 .45 31 23
Campus Interview| nominal value g 7 5 3 1
seale value 1.0 87 .42 .25 17
College Boards nominsl velue; 800 700 GO0 500 400
peele value 10 A7 29 37 08
Activities nominal valuel several/ {some/ none/ none/ none/
seale value seversl| several several gome none
1.0 .49 .28 19 08
Gredes nominal value| A B4 B B C
seale value 1.0 49 39 24 .15
High School nominal value| superior | excellent | very good good AVETR{e
Recommends- scale value 1.0 81 52 38 27
tion
IQ nominal value| 150 140 135 120 110
secaie value 10 .88 49 26 13
Rank pominsl value| top 5% | top 10% {top 20% | top 25% top 33%
seale value 10 .64 .27 19 .08

The data were scaled by the Comrey-Torgerson procedure. This method yields a
ratio seale of attribuies with an arbitrary origin, and we chose the origin such that the
maximum value on the scale was 1.0.

Figure 1 shows the results of the scaling of the attributes. Tt contains the scaled value
of each attribute for each individual judge and for the averaged data from all judges.
The averaged scale is derived by averaging the ratios for each pair across all judges,
then scaling the resultant average. For every judge, Attributes 3, 8, and 5 (Boards,
Rank, and Grades) are always the most important; Attributes 2, 4, 6, and 7 {Campus
Interview, Activities, High School Recommendation, 1Q) always follow in various
permutations; Attribute 1 (Alumni Interview) is always lowest on the scale.

The general conclusions we draw from these intermediate results are that:

a) There are the same three most important attributes for all judges;

b) These important attributes are much more important than the others (i.e.,
the two highest are from two to ten times more important than the average
of the others).

These scale values will be used later in the paper.

9. Value Scaling.—For each attribute, we wish to scale the values used in the
E-Table. The judges were presented with the ten pairs of values for each of the eight
attributes and instructed to assign points as in the earlier sections, The scale valueg
were obtained by averaging the raw point alloeation from all the judges. The results
are shown in Table 2.

D. Construction of the Allernalive Set

We seele data on a set of admissions decisions where the applicants take on a range
of values along all their attributes. For this purpose we constructed a set of hypothetical
applicants to be used in a series of similarity judgments and preference judgments.
The alternatives were constructed by using all combinations of the highest and lowest
values for the four most important nominal attributes (Boards, Grades, IQ, and Rank,
indicated by the average results in Figure 1). The other four attributes were radomly
assigned values from the E-Table. The sixteen alternatives thus generated are shown
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in Table 3. In the following sections we will describe the use of these alternatives; it is
worth noting here that for both the similarity and the preference judgments, the
alternatives are presented in pairs (120 in all) and the systematic variation in values
did not seem to be immediately obvious to the judges.

IV. Predicting Preference from a Similarity Based Configuration
A. Similarity Judgments: Procedure

All distinct pairs of the sixteen alternatives described above are presented to the
judges. The 120 pairs are presented on 120 slips of paper, with the order of presenta-
tion and position randomized. The judge is instructed to group the pairs info eight
“degrees of similarity” by repeatedly dividing the 120 pairs into subgroups of pairs
according to the relative overall similarity of one pair to another.”

When the judge has sorted the pairs of alternatives into eight piles, the results are
scored by assigning the numbers one through eight to the slips in the first through
eighth piles. The smaller the number assigned to a slip, the greater the similarity
perceived by the judge between the two alternatives represented on that slip. This
eight point scale of similarity is used as the prime input to the nonmetric multidimen-
sional scaling procedure deseribed in the pext section.

B. Multidimensional Scaling: Analysis

The above procedure yields, for each judge and for the average judge, & measure
of the perceived similarity of each alternative to all other alternatives. Interpreting
the similarity data as a measure of proximity, we then attempt to construct a spatial
configuration in which more similar alternatives are more proximate than less similar
alternatives.

More formally, we seek the following: a spatial configuration where the rank of the
interpoint distances is maximally inversely correlated with the rank of the similarity

* The slips are first divided into two piles, of high and low similarity; then each one of the piles
is divided into two more; finally the four piles are divided into eight piles. This technique is de-
seribed by Messick (1956).



9pes 403 o%eg doy o5eg doy %¢gg dog %¢ doy %¢g doy 49 doy’ o4g doy S0y J0THSE O §UTY
ot 08t oIt 091 011 021 ott 041 b1
pood pood L19a 1ouedng pood pood JUS[{29XD poo3 ERURETL: pusuraossy Jooyeg YItH
O o v v ) D v v gapuir) poyag 43y
*[iAfg/ou0T ‘[Aafg/ou0n auomn/eucH -jiAes/ouon j }A98/0TOU JIABE/ JIARE | JEASS/0WOS "[Haeg/ouon IAQUISN/I8PES] TAIOY
00¥ 0¥ Q0¥ Q0% 0o¥ 0113 00 0ov sez00g pIsog afs[jon
8 6 I § 6 g 6 I serarsjuy endmre))
ofuiane 9A0(B g L19a ERLAEEL gim 104 gy L1894 yay qang 98 dng MBIATHUY (UIENTY
91 51 ¥ £1 4 n ot 6 AMGLY
o 00 doy o668 dog osee doy onee doy org doy ore doy 876 dog ore dog BSGLD IOMAY UL Wuwy
o1t 081 011 0% 1)1 08T ot 05t [¥)
JUS{[B0X3 ofe10an pood L1aa pood aduisay 1UB[[30XS JUd{[A0X3 pood pusuaIosdl] jooyag YA
o O v v D D v v sepuay) J00Y0E YRH
*[1ABS/OH0H -[ASE/OUCY | “HASS/'[IADE *jraen/ouou auou/suou 21H0S/2U0H sTIog/eusi -jiAag/eucd IBQUIS/ISPRYY TATIOY
008 008 008 008 008 oog 008 008 saoog plzog o3a[e)y
5] g T g 1 1 [ g moratspu] sndus
ofuioas |afeieaw sA0gE jeaydry  |e8u194® 2A0QY gy gag paan Ay advioAaw MAITALDYU] TRy
g L 9 3 ¥ by z 1 =_nqEnY

105 PRIIDUAIN Y
£ HIEVL

601



602 DAVID KLAHR

measures, We use a procedure developed by Shepard (1962a, b) and significantly
improved by Kruskal (1964a, b) called “Nonmetric Multidimensional Scaling.” The
procedure starts with an arbitrary configuration of points and iteratively attempts to
find some arrangement of the points such that the interpoint distances correspond to
the input similarity data.’

If, in some configuration, the rank order of the interpoint distances is exactly the
opposite of the rank order of the similarity measures, then we have a perfect fit. As
the dimensionality of the space is reduced and the solution becomes more highly con-
strained, we are apt to get some departures from perfect fit. Some of the distances may
be “out of order.”” A mensure of departure from perfect fit, called the “stress” of the
configuration has been developed by Kruskal (1964a); it is quite similar to a residual
sum of squares. From an extensive series of empirical investigations on a variety of
data, Kruskal suggests that departures from perfect fit (stress = 0) be interpreted as
follows: .025-excellent; .05-good; .10-fair.”

The procedure we follow is to find the best fit—the minimum stress—in spaces of
decreasing dimensionality. We expect minimum stress to increase as the dimensionality
decreases, starting in n — 1 space with zero stress. The decision as to which eonfigura-
tion is the most appropriate representation of alternatives rests upon scientific judg-
ment, and is not a direct output of the scaling technique. The decision depends upon
the stress, the dimensionality of the space, and the meaningfulness of the final con-
figuration.

We adopt Kruskal’s suggested interpretation and seek good fit: stress = .05. We
also adopt his suggestion to accept that configuration where there is a decrease in the
marginal improvement in the fit effected by inclusion of more dimensions. (In Figure
2, the plot of minimum stress versus number of dimensions, this point locates an
“albow” in the curve.)

The meaningfulness of the configuration rests upon what the points in the space
represent. Our similarity date is based upon gixteen alternatives that are distinct with
respect to the values they have on eight attributes. The worst we could do is find that
stress was unacceptably high in all but the fifteen-dimensional configuration. In this
case the scaling procedure would have told us that there is no way to represent the
alternatives other than to list them with their values. Sinee the alternatives are
deseribed by only eight nominal attributes, we would expect that no more than eight
dimensions would be necessary for a good fit. However, we have reason to expect good
gt in 5 much lower dimensionality. Recall that the alternatives were generated by
systematically varying the values of the four most important nominal attributes, and
randomly varying the values of the others. We would expect, then, that no more than
eight dimensions will be necessary.

# Tt is always possible to find some arrangement of n points in Buclidesn space of n — 1 dimen-
sions that satisfies the similarity data (Bennett and Hays, 1960, pp. 37-38). For example, given
interpoint distences of four poiats, we can alweys £nd some 3-dimensional configuration that
sntisfies the ordinal relationship smong the interpoint digtnnoes. However, an n — 1 dimengional
representation of n points is not a more parsimonious representation of the data than the original
n{n — 1)/2 similarity measures. What we seel is a confipuration of very few dimensions that still
sntisfies the similarity date. As we reduce the dimensionality of the configuration it becomes
more dificult to find a configuration that fits the dats. At the same time, any configuration that
does fit is likely to be unique, for we bave n(n — 1)/2 mensures %o fit only n points. In our case,
we have 120 similarity judgments with which to fit sixteen points in some configuration.

19 Fstimates of the statisticel signifieance of these stress levels have rocently been derived
{(Klakr, 1069). They indicate that the results presented here are of high statistieal significance
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¢. Multidimensional Scaling: Results

In this section we describe the final configurations, their goodness of t, their dimen-
sionality and the relationship of the nominal attributes and values to the final con-
figurations.

Based upon the above criteria, we found that a four dimensional configuration of the
sixteen objects was the appropriate representation of the cognitive structure of the
judges. This was determined by finding the minimum stress for each judge, and for the
average of all judges, in spaces varying in dimensionality from five to two. The results
ave tabulated in Table 4 and plotted in Figure 2. Notice that Figure 2 is, in effect, a
plot of goodness of fit versus number of degrees of freedom; each point represents the
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TABLE 4
Minimum Stress for Each Judge in Spaces from 810 § Dimensiong**
No. of Dimensions
2 3 4 5
Judge 1 158 084 036 011
Judge 2 055 013 07 006
Judge 3 182 118 046 023
Judge 4 .088 {48 024 021
Judge 5 132 077 031 032
Average Judge* 116 070 038 031

* Note: This is not & column average. It is the minimum stress
resulting from sceling the similarity data averaged over the five
judges.

** fnch cell represents the stress of the final configuration of the
16 alternatives. The four-dimensionnl configuration for the Aver-
age Judge (Stress = (038) is plotted in Figure 3.

TABLE &

Coordinates of Alternatives in Final Four-Dimensional
Configuration for Average Judge

Dimension
Alternative
3 2 3 L3
1 0. 658 0.538 0.363 0.386
2 {.589 0 644 0.208 —0.258
3 0.677 0.670 —{(.248 0.320
4 0.5619 0.625 - (.387 -{).303
5 0.687 -{.524 0.252 0.238
[ 0.601 {3,610 0.378 —(.122
7 0 G10 (). 554 ~(}. 295 0.456
8 {.573 ~{.656 —0.321 —0.388
g —0.548 0.647 (.435 0.343
10 —0.6567 0.545 0.219% —{.468
11 - (}.483 (3.581 —0.363 0.520
12 (. 726 0.516 —{.306 -{.320
13 ~{.622 —0.611 0.188 0.252
14 —0.656 —0.601 0.552 —(.443
15 —0.623 —0.568 —{0. 451 0.183
18 —0.699 —0.641 —0.364 —0.404
Cluster Centers =& .627 4. 596 4= .336 =+ .339
Scatter 058 049 089 102

Note: For each dimension k, the Cluster Center is m* =
P 3 |z:4{- The Scatter is the sum of the variances of positive
values about + z* and negative values about —z*. Or, equival-
ently,

Scatter = (&, (zal — =m*)H¥,
These equations are only valid when there are the same number
of points in each cluster.

stress of that configuration of sixteen points in n dimensions which best fits the simi-
larity data for a particular judge. Figure 2 does not tell us anything about what these
configurations actually look like, nor how similar or different they are from one another.
For all five judges and for the “average judge” four dimensions are sufficient to obfain
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g good ft. There is a noticeable elbow in the plot at four dimensions for all but
Judge 5.

The four-dimensional configuration for the “‘average judge” (see discussion below) is
presented in Table 5 and in Figure 3. Tt is important to bear in mind that the essential
property of a configuration is the relationship among the interpoint distances of the
sixteen points. The configuration was constructed so as to minimize the difference
between the rank order of these distances and the rank order of the similarity judg-
ments of the judges, and it can undergo any arbitrary translation, rotation or uniform
stretching of axes without changing its meaning.! In fact, the configuration has been
stretched and moved such that the centroid is at the origin and the root mean square
distance from the origin to all points is equal to one.

Before we turn to an interpretation of the configuration, we will determine whether
it is meaningful to average the data across judges and discuss the “‘average judge.”
Conceptually this means that we assume that all judges are identical, and that in-
dividual differences in their responses are due to measurement error or random noise.
Whether or not this is a tenable hypothesis can be determined empirically. In the case
of the data we have here, we can justify aggregation across judges. The justification
rests upon the result of product-moment correlations between the 120 interpecint
distances in each judge’s configuration and 120 corresponding interpoint distances in
the “average” judge’s configuration. (It is important to bear in mind that this modal
configuration is obtained by averaging the raw similarity date and then performing
the multidimensional analysis, nof by averaging the configurations of the individual
judges.) The measure of agreement between any two configurations that we use is
the product-moment correlation between the interpoint distances in configuration a
and configuration b.2 If two configurations are identical, except for arbitrary transla-
tion, rotation and stretching and shirinking of axes, then the product-moment corre-
lation will be one. For the five judges and for the average judge, the product-moment
correlations of the interpoint distances are shown in the first five columns of Table 6.
The last three columns of Table 6 contain, respectively, ra;, j = 1, 5 the product-
moraent correlation between distances in the final configurations for judge 7 and the
average judge; o5 J = 1, 5: the variance of distances in the configuration for judge j;
87, = 1, 5: the standard error of estimate squared. The latter is 2 measure of how
much of the variance in configuration j is unexplained by the variance in the average
configuration. These large r's and low standard errors justify the use of the average
judge as an estimate of the “true” configuration underlying each individual judge’s
similarity judgments.’® We will confine our discussion of the configurations to the
results of the average judge (Figure 3; Table 5).

The four-dimensional configuration of the averaged similarity data is plotted in
Figure 3, two dimensions at a time. Each numbered point represents the loeation in
the final configuration of the corresponding alternative in Table 3. The entire configura-
tion in Figure 3 corresponds to = single point in Figure 2 (Stress = 038, Number of
Dimensions = 4) on the line for the stress of the average judge.

Tf, in making similarity judgments, subjects responded only to changes in the values

11 This is only true when a Euclidean metric is used for the distance function.
12 This is the measure of interconfiguration gimilerity suggested by Shepard {1966).

oy o P i (W — i) (i — &
(T (0% — i @ — &

12 This finding is consistent with the earlier comments sbout the tendency toward consensus
that prevailed in the admissions office.
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TABLE 8

Product-Moment Correlations Between Inlerpoint Distances in all Final
Four-Dimensional Configuralions

TJudge
Judge aj? 5
2 3 4 5 Average
1 .67 71 .62 1 .85 13 .08
2 B8 il 67 .85 17 04
3 66 58 75 J14 .06
4 1 .85 21 .05
5 82 .15 05

Notes: 1 For all correlzetions n = 120.2. 0 is the variance of the distances in the configuration
of Judge j- 3. 852 = a*(L — ra®, the standard error of estimate squared . 4. Bach cell in the column
iitled “Average’ containg ro;—the product-moment correlation of distances in configuration for
Judge 7, with sorresponding distances in the avernge judge’s configuration.

of the four systematically varied attributes, and if the differential changes in the values
of each attribute were judged to be equivalent, then the configuration would be a four-
dimensional hypercube. If such a “perfect” configuration, consisting of an alternative
at each vertex of the hypercube, were plotted in this fashion, each of the six plots in
Figure 3 would have four points symmetrically placed in each quadrant. Every point
would correspond to the four alternatives having the pair of values represented by the
projections on the axes. Thus, for example, the upper right hand quadrant of Dimen-
sion 2 versus Dimension 1 would consist of a single point corresponding to the four
alternatives that had high values of the two attributes corresponding to Dimensions
1 and 2. Tt is evident from Figure 3 that the points do form four clusters in each panel,
although the clustering is poorer for higher dimensions.™

We ean establish a correspondence between the dimensions in the configuration and
the nomina} sttributes of the alternatives represented therein by examining Figure 3.
In the top panel of Figure 3a, points 1, 2, 3, and 4 are simultaneously high on Dimen-
sions 1 and 2. Alternatives 1, 2, 3, and 4 are the only alternatives that are high on both
College Board Scores and Rank in Senior Class (see Table 3). In the bottom panel of
Figure 3b, points 3, 4, 11 and 12 are simultaneously high on Dimension 2 and low on
Dimension 3. Only Alternatives 3, 4, 11, and 12 are gimultaneousty high on Rank and
low on Grades. Similar comparisons for the other panels of Figure 3 yield the following
identifications: Dimension 1-College Board Scores; Dimension 2-Rank in Senior
Class; Dimension 3-High School Grades; Dimension 4-1Q.

The distribution of points along each dimension provides information analogous to
the mean and standard deviation of a correlation coefficient. The first mensure we
call the “cluster center” for each dimension. It is obtained by averaging the positive
distances on the dimension. (Recall that the normalization of the configuration puts
the centroid of the configuration at the origin, so that on each dimension £ = 0.) The
larger the value for the cluster center, the greater the relative importance of the spread
of nominal values on the corresponding dimension. The second measure is the standard

14 Al the configurations were started from an initial configuration corresponding to the ‘‘per-
fect” arrangement. This initisl configuration converged to & final configuration that was identical,
with respect to interpoint distances, to final configurations obtained from Kruskal's arbitrary
initia) configuration. The advantage lies in facilitating the identification of nominal attributes
with the configuration axes. This technique ig legitimate in Buclidesn spaces {of. Kruskal, 1064a,
pp. 14, 23).
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deviation of both positive and negative distances about the corresponding posttive
and negative cluster centers. The resulis of these computations are shown in Table 5,
where columns 1 to 4 correspond to Dimensions 1 to 4 in Figure 3. The cluster centers
for Dimensions 1 and 2 are further apart than those for Dimensions 8 and 4, indicating
that the differences between maximum and minirmum values of Board Scores and Ranlk
in Class are perceived as greater than the maximum and roinimum values of High
School Grades and IQ. The variation around the cluster centers is also presented in
Table 5 in the row labeled “Scatter.” This measure indicates that Boards and Rank
more consistently affect similarity judgments than do Grades and 1Q.

The form of the similarity evaluation funetion is obtained directly from the final
configuration. By constructing the configuration such that the interpoint distances
agreed with the similarity judgments, we found parameters for the function:

F(Sa — S0 = [ Dot (Soi’ = iV

8, and Sy;’ are the perceived values of perceived attribute j for alternatives a and b;n
is the number of perceived relevant attributes used in the evaluation function; r is the
spatial metrie; and F(S; — 8 is the perceived similarity between alternatives S. and
S,. We have already discussed the finding that n = 4. The analysis of the final con-
figuration enabled us to identify the nominal attributes with the four dimensions
required in the final configurations. The value of 7 is 2, indicating that we are using &
Euclidean distance function.’

The relationship between the nominal values S.; , Si; and the subj ectively perceived
values S.; , Si; depends upon the unidimensional tpsychophysical’” functions meas-
ured in Section IIIC. That is,

8oi' = [(8as)-

{See Tversky, 1966 for a rigorous development of this concept.) Thus the most general
expression for F is

F(S: — 8o) = [ o Fi€Sas) — F5Su} )T
From the data we have analyzed,
F(Se — 8) = (ten 1ilSes) — (S

The §;(Ss;) values correspond to the cluster centers in the final configurations. The
actual form of the f; can be determined by plotting the nominal values against the scale
values of the four quantitative attributes in Table 2.

Summarizing the evaluation of the final configuration, we conclude that the under-
lying spatial configuration is consistent with a Euclidean metric in a space whose
dimensions are in direct correspondence to the nominal attributes and values of the
alternatives. In assessing the overall similarity of applicants, judges respond fo the
attributes Board Scores, Rank, Grades and IQ to a successively decreasing extent.

D. Preference Judgments: Procedure

All distinet pairs of the sixteen alternatives are presented to the judges. The 120
pairs are presented in a 120 page booklet, with the order of occurrence and position

1t The sealing was done with both r = 1land r = 2. For all judges in all dimensions, r = 2
slways yielded n lower minimum stress than v = 1. Of course this does not eliminate the possibility
ihat some other distance function might provide a better fit. The only eonclusion we can draw
here is that the Euclidean metric {r = 2) is more appropriate than the “gity block” metric (r = 1).



TABLE 7

Preference Averaged over oll Judges

Overnll
Quality

28.0

24.2

14.8

4.6
10.8

8.4
—2.4
~0.6

2.8
0.4
~2.4
w13 .0
~10.4
~17.4
- 20.8

w270

16

3.0
3.0

2.2
1.8

2.2
2.0

2.0
1.8

1.8
2.0

1.8

1.2
1.8
0.2
0.2
0.

15

2.6
2.4

2.2
1.0
2.0
2.2

1.2
1.6
1.0
1.6
1.6
0.3
0.6

0.2

—0.2

14

2.8
2.0

1.4
1.0
2.0

1.6
1.4
0.8

1.4
1.4
1.0

0.2

0.8

(.2
- {}.2

13

2.6

2.2
1.4
1.0
1.4
1.6

0.4

1.0
1.0

0.6

0.2
0.2

—~0.8
—0.6
—1.8

12

2.2
1.8

1.8
1.6

1.0
1.4
1.2
1.2

1.0
0.8

1.4

—-0.2
—0.2

—0.8

-1.2

1l

1.6
1.8
1.2
0.8

1.0
1.2

0.4
0.6

—0.2

—1.4

-0.2
-1.0
—1.6

—1.8

0

2.0
1.6
0.8

0.6

0.8
1.0

—0.8
—0.4

0.2

¢.2
w{}.8
~0.6
1.4
~1.6
—2.0

1.4
1.3
0.4
—0.2

1.2
0.6
-0.2

—0.8

-0.2

—0.6

—1.0
~1.0
—1.4

—1.0
-~1.8

2.0
1.6
1.0
1.0

0.6
0.4
—0.4

a.8

0.4
0.4

-1.2

—1.0
~0.8
—1.6
—1.8

1.8

1.6
1.6
0.8

1.2
0.2

0.4

6.2
0.8

—1.2
—~0.4
—1.4

—1.2
—~2.0

1.8
1.0
1.0

w34

0.4
0

~0.2

—0.4

—0.6

—1.0
1.2
—~1.4
—~1.6
~1.6

—2.2

—2.0

1.2
1.4
0.2

0.2

—1.2
—0.6

—1.2

—~0.8
—1.0

—1.0
—1.4

—-2.0

—2.0
~2.2

2.0
1.8

6.8

-0.2

0.4
~0.8
—1.0

0.2
—0.6
-0.8
~1.6
-1.0
—-1.0

—1.0
—1.8

0.8
0.4

-0.8

-2
-—1.0
—1.6
—1.0
—0.4
—0.8

-1.2
~1.8

-1.4
—1.4

—2.2

2,2

0.2

—-0.4
—-1.8

—~1.4
—1.0
—1.6
~1.6

—1.8
—~1.6

—1.8
—1.8

—2.2
w20
34
~3.0

—-0.2

—0.8

—-2.0
—1.2
~1.8

-~1.8
—2.0

~1.4
—2.0
-1.6

-2.2
~2.6
—2.8
—2.6
-3.0
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TABLE 8
Measures of Interpoint Distances in Final Configuration, two Additive Utility Models, and Overall
Qualily of Allernatives Summary Statistics for Prediclion of Ouerall Quality.
{See Figure 4 Jor Plof )

1 s 3 4
Alternative
Distance Linear Modei Quadratic Model Overall Quality
1 .00 3 30 0 .00 28 O
2 0.65% 3.32 0.08 24.2
3 0.620 2 52 0.76 14.8
4 0.087 2.11 0.77 4.6
5 1.078 2.61 0.50 i6.8
6 1.257 2.76 0.62 8.4
T 1.278 1.67 1.22 —2.4
8 1.581 1.97 1.31 —0.6
g 1214 2.49 0.69 2.8
30 ¢ 1.575 2.57 0.74 0.4
Tl 1 360 2.10 148 .
12 1.692 1.68 1.45 ~13.0
13 1.734 2.02 1.19 ~10.4
14 1.9306 1.69 1.27 —17 .4
15 1.888 1.22 1.92 —20 .8
16 2.004 0.52 1.95 —27.0
Correlation Coefficient rig = ~—.045 oy = D42 ra o= - 931 oyt = 222
Error of Estimate (Squared) | sk = 23.6 su =248 85 = 205 oy = 14 9

randomized. The judges are instructed to indicate the degree to which one member
of each pair is more highly qualified than the other by placing a mark in the appropriate
column of a seven point rating scale.

This procedure yields, for each judge, a measure of the perceived qualifications of
each alternative compared to every otber alternative. We define ;P as the qualifica-
tion of alternative j compared to alternative & as rated by judge ¢. The seven possible
responses are scored from —3 to 3. If ;P > 0, then j was rated by judge ¢ as being
more qualified than k. We measure only for j > k and define Py; = 0, Py = — Py;.

The results are presented for the average judge in Table 7. It contains the average of
the :P;: across judges. For each entry in Table 7, the average preference is:

5
tuk = ‘}; Zi-d iPii:-

The right hand column in Table 7 represents the overall aggregation of the five sets of
120 pairwise preference judgments on sixteen alternatives. We define these row totals
in Table 7 as the Querall Qualily of the alternatives as determined by the preference
judgments, that is:

(Overall Quality); = Q; = 2 i aPu = Dot 2Py
(For purposes of cross reference recall that the row and column numbers in this table
correspond to the alternative numbers in Table 3.)
E. Prediction of Quality from the Spatial Configuralion

The final set of averaged preferences described above (i.e., the §;’s) are taken to be
the direct measure of preference for alternatives. In this section we will test the major
hypothesis of this paper: that the distances in the final configuration are directly
related to the preference measures. Distances in the spatial configuration from the
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ideal alternative to all other alternatives are computed and compared with the quality
data. Since the higher quality alternatives are posited to be closest to the most pre-
serred alternative, we would expect a negative correlation between the two measures.
We will also compare the preferences to two different additive utility models based
upon the unidimensional sealing of Section IV-C.

The ideal alternative in this ease is the one with the maximum value of all relevant
attributes: Alternative 1. This is substantiated by the fact that for each individual
judge there was no alternative preferred to Alternative 1 in the pairwise eomparison,
ie., {Pie = 0,1 = 1,5;k =1, 16. The distances from Alternative 1 to all other alter-
natives in the final configuration are presented in column one, Table 8. The Overall
Qualities are presented in column four of the same table. The product-moment corre-
lation between the two columns is —.94; the variance of the quality measures is 222;
the error of estimate squared of the correlation (using the distances as a predictor of
the Qualities) is 23.6.% Thus, all but eleven per cent of the variance in Quality is
“gxplained” by the distances in the configuration. A plot of these two measures is
presented in Figure 4.

F. Prediction of Preference with Two Addilive Ulility Models

Tt is of interest to compare the prediction of Quality based upon configurational
distances with Quality predictions based upon a more conventional method. We use two
models of additive utility in which the overall worth of an alternative is simply the
weighted sum of some function of its value along each of its nominal attributes. The
weights are obtained from the scaling results of Section I11C. We take the scale values
of the attributes with maximum value (Figure 1) as the weights, a., of the attributes

15 Clorrelation coefficients are used here because the orbitrary units of Quality and Distance
would render regression coefficients meaningless.
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and the scale values of the nominal values (Table 2), V;, to compute the worth of
ench alternative. Two additive models are used: one linear, one quadratic. The fune-
tions are computed both for individually scaled attributes and values for each judge,
and for the group average. First we will discuss only the average judge. For the linear
model the worth of an alternative is

W; = 2 eV,

where W; = worth of alternative j,
a; = weight of attribute 7,
Vi = value of alternative j on attribute <.

For the quadratic model, the worth of an alternative is a function of the squared
difference on each attribute between alternative one and alternative j.

W1 = 0,
W; = > jmadViy— Vi),

where W, , a,, V; are as defined above.

The worths of the alternatives according to these two functions are presented in
columns two and three of Table 8, When these values are correlated with the Overall
Quality measure, the results are essentially the same as for the correlation of config-
urational distances with Overall Quality. For the linear model, where a higher worth
is directly related to Overall Quality, r = .94. For the quadratic model, where lower
worths are direetly related to Overall Quelity, r = — 93. Thus we conclude that at
the level of aggregation that we have treated the data (i.e., aggregating across judges),
the configurational distances based upon the analysis of similarity judgments are as
good predictors of Qualify as the more direct techniques based upon additive utility
models. Furthermore both techniques are extremely accurate predictors of Quality.

Although earlier in this paper we justified treating the average judge as representa-
tive of each judge, we will next consider the relationship between quality, distance and
the additive models for each individual judge. Thus we use the interpoint distances in
each individual final configuration. In the additive models we use the weights from the
individual scales in Figure 1 to compute worths for alternatives. Each of these three
measures is then correlated with the average quality for the corresponding tndividual
judge. The results of these individual correlations, and the aggregate level correlations
discussed above, are presented in Table 9.

The results indicate that the distances in each individual’s final spatial configuration
are highly (negatively) correlated with that same individual’s quality judgments.

TABLE §

Correlation Between Qualily and Distence, Qualily ond Linear
Model, and Qualily end Quadraiic Model. Aggregate and

Individual Levels
Distance Einear Quadratic
Group Average - .95 .04 - 93
Judge 1 — 77 83 - 80
Judge 2 -7 04 - 07
Judge 3 - 72 78 -— 74
Judge 4 - T4 87 — .81
Judge 5 - B8 94 — .85
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However, for all judges, both additive uy mo ar bettelitPeelsrti predictors than the
distances model. Thus, although the results at the individual level support the basic
hypothesis that preferences can be obtained from the spatial model, it seems that
aggregating over judges obscures the relative efficacy of the spatial model versus the
additive utility model.

V. Discussion

In 1054, in a review of theoretical and experimental work on individual decision
making, Ward Edwards said *“ . . it seems impossible even to dream of getting experi-
mentally an indifference map in n-dimensional space where 7 is greater than 3. Even
the case of n = § presents formidable experimental problems” (1854, p. 388). Ten
years later, Robert Abelson, writing on theories of choice, said “there is . . . 2 need for
more theory and more experiment on the problem of the multidimensionality or
multiaspect nature of choiee objects” (1964, p. 263).

Both statements emphasize the fact that at the heart of all decision malking behavior
lies the process whereby the attributes of the alternatives are somehow combined and
compared. The research deseribed in this paper is an attempt to develop a methodology
for studying this erucial aspect of decision making. The spatial configuration that is
generated from the multidimensional scaling procedure consists of alternative choice
objects located in a multiattribute space. Each attribute corresponds to a commodity
in the usual indifference map terminology, and each alternative is an n-commodity
bundle. Once the ideal object has been located in the space, it is possible to define
indifference hyperspheres with origin at the ideal.

Fishburn (1967) reviews twenty-four methods for estimating additive utilities for
an individual evaluator. The current research can be viewed as a twenty-fifth. The
procedure, described in detail in previous sections, is to construct a spatinl configura-
tion on the basis of similarity data, to independently locate an ideal object in the
configuration, and to postulate a utility or, in our terms, “guality” based only upon
distanee from the ideal object.

The tenability of such a method rests upon a proposition that is outside utility
theory: the proposition that the utility of an object is inversely proportional to its
distance from an ideal object in a subjective “‘decision space.” The independent test
of the validity of this proposition consists of obtaining an independent set of preference
measures and assessing accuracy of the multidimensional configuration’s distances as
predictors of preference. Such a procedure was described above, and the accuracy was
very high.

Two conventional forms of additive utility functions were construeted and they were
both somewhat better than the spatial configuration in predicting preference. Since the
spatial configuration required more effort than the additive models, one may wonder
what the advantage is, especially since the configuration turned out to be {airly close to
our intuitive expectations. The answer to this question lies in emphasizing the fact that
the spatial configuration is not based upon nominal attributes and values, but rather
upon the subjective perception of them by the decision maker. For the hypothetical
alternatives that were used, there was high correlation between the nominal and the
subjective. However, in more realistic situations, where the values of the attributes are
not, under arbitrary control of the experimenter, we may not find such a one to one
correspondence between the axes of the spatial configuration and the nominal atfri-
butes.

There has been some speculation and experimentation in the past few years to deter-
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mine the appropriate metric for similarity data. (Shepard’s 1964a article is one of the
best on this topic.) We analyzed the similarity data in both the Buclidean and the city-
block metrie. In all cases the Euclidean metric provided a better fitting configuration.
It has been found that in paychophysical realms such as color or tone perception the
Buclidean metric provides better fit than the city-block metric (I{ruskal, 1964a, p. 24).
However, Shepard noted that as we move toward highly analyzable stimuli—from the
perceptual to the conceptual—the Huclidean metrie seems to break down. He found
that a meiric between the Euclidean and the city-block provides the best fit, but even it
was inappropriate when shifts in attention focus occurred. Thus, we expected to find
the ecity-block metric a better representation than the Euclidean. In fact, we found the
opposite. This leads us to speculate that the Euclidean metrie might be appropriate at
both ends of a continuum of analyzability. At one end we have the psychophysics situa-
tion, e.g., color judgments, in which it is usually impossible for the subject to directly
perceive and name the attributes along which the stimouli vary. In the middle we have
stimuli such as simple geometric figures varying along a few highly obvious attributes.
At the other end we have the kind of “real world” complexity that we have used. We
sugpest that the subject, when faced with stimuli varying along many incommensurate
nominal attributes, is incapable of making the sort of diserete and explicit trade-offs
that yield the city-block metrie, but instead forms an overall impression that is best
captured in a Fuclidean metric.

The collection of procedures used in this study comprise a new methodology for the
study of decision making. It iz therefore appropriate to present a brief methodological
critique. The major part of the critique is addressed to the artifacts that reduced the
realism of the decision environment. They are not inherent in the procedure, but were
introduced to simplify this initial effort.

The procedure introduced a note of artificiality when, in generating the alternatives,
high and low values for all four of the major attributes were generated. This led to some
highly unrealistic alternatives, such as baving an IQ of 150, a Grade Average of A, a
College Board Score of 400, and a Rank in Class of Top 33 per cent. This forced in-
dependence of attribute values reduced their usefuiness to the judges as mutual predie-
tors. Once the judges learned that they were about o encounter these kinds of alter-
natives, they no longer relied as much upon the level of IQ, for instance as a predictor
of College Board Scores, ¢ic. The net effect of this artifact upon the mulfidimensional
scaling tends to increase the number of dimensions in the final configuration. We would
like to remove this artifact in future work by obtaining the similarity datas with aclual
alternatives in whatever decision realm we study.

An important aspect of our arbitrary manipulation of the attribute values is the fact
that the fourth attribute whose values we systematically varted, IQ, was far behind the
other three on the individual rating forms (Figure 1). By including it with the others,
and by making it independent, as noted szbove, we may have focused more than the
usual amount of stiention upon it. On the average four dimensions were required to ade-
quately represent the decision space, so that judges were fo some extent attending to
the variation in IQ. However, as can be seen from Figure 3, and Table 5, the effect of
1Q upon spatial distribution was both small and unreliable compared to the other three
attributes. Although the arbifrary selection of four of the eight nominal atiributes may
have overemphasized the usual importance of one of them, the scaling technique is
sensitive to those cases where the variation in an attribute was relatively unimportant.

Another problem in our experimental method oceurs in the sequence with which we
gathered data from the decision malers. The eazly steps consisted of several tests con-
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cerning their judgments about the relative importance of attributes and values of attri-
butes. Only a few weeks later we tested the judges again on similarity and preference
measures, It could be the case that the early discussion, testing and explicit questioning
about the relative importanceof attributes and valuesled the judges to be more conaist-
ent than they might have otherwise been.

Finally, the generality of these results needs to be explored in those situations where
preference is not a monotone increasing function of each attribute as was the case in the
environment studied here. The relation between similarity and preference in such cir-
cumstances may in general be more complex than what we have found.

V1. Conclusion

We have developed a methodology to construct a representation of the subjective
decision space of a set of experts operating in a familiar environment. The space, con-
structed on the basis of similarity judgments, provides aceurate predictions of prefer-
ence. There are several major conclusions that can be drawn on the basis of
this research.

1. The technique of nonmetric multidimensional sealing, recently developed for
use in the psychophysics laboratory, ean be utilized as a powerful tool in deci-
sion making research.

2, The underlying dimensions of a complex decision space can be discovered and
related to the nominal attributes of the alternatives. To the well-known fact of
limited capacity to notice and process we can add information about what parts
of the environment are being selected as relevant to the decision malker.

3. The proposition that preference and similarity judgments are made in the same
decision space has been subjected to empirical fest, and has not been refuted.

There are several possible directions for future research along these lines. The most
straightforward would be a repeat of the procedure with experts from another very
different environment, e.g., investment analysts or race-track handicappers. In such an
extension we would remove most of the artifacts described above by using the actual
alternatives with which the decision makers commonly deal.

A shift in emphasis could make this kind of analysis useful in the marketing area. If
we can construet & spatial configuration for a class of products {e.g., cars) an if we can
also obtain a transitive preference ordering, then we can locate the ideal object in the
space. This ideal object would indicate a latent demand for a certain product. The same
kind of analysis might be used in conflict situations to determine the subjective spaces
of opposing parties dealing with the same set of alternatives. These kinds of applica-
tions are speculative at this time, but they seem to be feasible extensions of the method-
ological developments contained in this research on decision making in complex en-
vironments.
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